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The one-dimensional linear homogeneous Boltzmann equation is solved for a 
binary mixture of quasi-Maxweltian particles in the presence of a time-depen- 
dent external field. It is assumed that the charged particles move in a bath of 
neutral scatterers. The neutral scatterers are in thermal equilibrium and the con- 
centration of the charged particles is low enough to neglect collisions between 
them. Two cases are considered in detail, the constant and the periodic external 
field. The quantities calculated are the equilibrium and the stationary dis- 
tribution function, respectively, from which any desired property can be derived. 
The solution of the Boltzmann equation for Maxwellian particles can be 
reduced to the solution of the so-called cold gas equation by employing the one- 
dimensional variant of a convolution theorem due to Wannier. The two limiting 
cases, the Lorentz gas (m,~ ~ 0) and the Rayleigh gas (m A --~ co) are treated 
explicitly. Furthermore, by computing the central moments, the deviations from 
the Gaussian approximation are discussed, and in particular the large-velocity 
tails are evaluated. 

KEY WORDS: One-dimensional Boltzmann equation; time-dependent exter- 
nal field; Maxwell gas. 

1. I N T R O D U C T I O N  

We: consider a one-dimensional binary mixture of quasi-Maxwellian par- 
ticles with arbitrary mass ratio where the charged component is moving in 
the bath of the neutral component and interacting with a time-dependent 
external field. The system is assumed to be spatially homogeneous, and the 
quantity of interest is the time-dependent velocity distribution of the 
charged particles and quantities derived therefrom. 
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The reason for considering this simple model is that it allows the 
calculation of both nonequilibrium and equilibrium properties in an 
analytic form, starting from the linear Boltzmann equation. For this 
equation to be a valid description the following assumptions are made: (1) 
Only binary collisions between charged and neutral particles take place. (2) 
The neutral particles are assumed to be in thermal equilibrium and hold 
their velocity distribution constant in time. (3) The concentration of the 
charged particles is low enough to neglect collisions between them. 

The assumption of a Maxwellian interaction, though an artifice in one 
dimension, can be justified for three reasons: First, it makes the collision 
probability independent of the velocity of the particle, thereby making the 
equation amenable to analytic treatment. Second, the results can be com- 
pared with calculations for the more realistic hard-sphere interaction. 
Third, in three dimensions the Maxwell model can be justified by the fact 
that at large enough distances the polarization potential for the ion-neutral 
interaction varies proportional to  r -4, leading to a velocity-independent 
collision frequency. 

Two special cases of this model are also considered in this paper. The 
first is the Lorentz model, where light charged particles move in a bath of 
heavy neutral scatterers. The second is the Rayleigh model, i.e., the motion 
of heavy charged particles in a bath of light neutrals. 

In the case of equal masses the system turns out to be of special 
simplicity and a solution' can be found for an arbitrary time-dependent 
external field. This system is related to an idealized moment charge transfer 
model, where an ion transfers its charge to the neutral particle upon 
collision, but no momentum or energy is transferred. 

The mathematically more involved system of hard rods in one dimen- 
sion with a constant external field has been studied by Piasecki and 
Wajnryb, ~) Piasecki, ~2) and Gervois and Piasecki. (3) In the last paper the 
equilibrium velocity distribution of hard rods is obtained for a system of 
equal masses. 

In the following sections we only quote the work of authors directly 
related to our topic. The general development of the subject can best be 
traced in the book of Chapman and Cowling (4) and the publications by 
Kihara, (5) Wannier, (6) Kumar and Robson, (7) Whealton and Mason, (8~ 
McDaniel and Mason, ~ and Kumar e taL ~~ and references quoted 
therein. 

The paper is organized as follows: In Section 2 a convolution theorem 
is shown for the linear Boltzmann equation with Maxwellian interaction. 
This theorem allows us to represent the distribution function in a series of 
the moments of the so-called cold gas equation. In Sections 3 and 4 the 
Boltzmann equation is solved for equal masses and arbitrary mass ratios, 
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respectively, and the case of a constant external field is investigated in more 
detail. In Section 5 the results for the two limiting cases, the Lorentz-limit 
(ma ~ 0) and the Rayleigh limit (ma --+ oo), are considered. In Section 6 we 
study the case of a periodic external field both for finite mass ratios and for 
the Lorentz and Rayleigh limits; concluding remarks are made in Section 7. 

Note that throughout this paper we use the term equilibrium dis- 
tribution if the limit ~ --+ oo exists, whereas the term stationary distribution 
is used if the distribution function becomes periodic in the long-time limit 
(derived by the limit lim,0~ ~, where Zo is the starting time). 

2. BOLTZMANN EQUATION FOR CHARGED PARTICLES 

We consider the motion of charged particles of mass m A and charge q 
in a bath of neutral particles with mass mB under the influence of a time- 
dependent external electric field E(t). Assuming that collisions between 
charged particles can be neglected (n A ~ 0) and restricting ourselves to the 
spatially homogeneous case, we can calculate the velocity distribution 
function of the charged particles via the linear Boltzmann equation 

h(v, t)+q--~-E(t)~---~h(v, t) 
mA 

= n B f  [h(v', t ) fB(v ' l ) - -h(v ,  t) f ,~(v,)] Iv1-v[  ~dvl  (2.1) 

whe, re the postcollisional velocities v' and v' 1 for a one-dimensional inter- 
action are given by 

v' - ma -- mB  2mB 
v + - -  vl (2.2a) 

ma + me m• + m B 

2mA mA -- mB 
v ] - - -  v v I (2.2b) 

ma + mB ma + m B  

Furthermore, nB is the number density of the bath and fB denotes the 
Maxwell-Boltzmann equilibrium distribution function 

fB(v) = (1/Ttl/2vrB) exp( - vZ/v2B), vZB = 2kT/mB (2.3) 

In analogy to the three-dimensional case we assume the collision cross 
section a to be inversely proportional to the relative speed, i.e., 

Iv1 - v]a  = O'o (2.4) 
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where ao is a velocity-independent interaction constant. Since in three 
dimensions (2.4) holds for the Maxwellian (r -n) interaction law, we use the 
same terminology in one dimension. As in three dimensions, one calculates 
the collision cross section in one dimension using the Stosszahlansatz and 
the conservation equations (2.2a), (2.2b). The collision cross section (2.4) is 
designed to produce the same velocity dependence in one and three dimen- 
sions for quantities such as the collision frequency and the momentum and 
energy transfer. As far as the relationship to realistic dynamics is concer- 
ned, a comparison between the one -(11'12) and three-dimensional (13) 
dynamical self-structure factors for the Maxwellian and the hard core 
interactions shows close similarity. Furthermore a one-dimensional 
Maxwellian gas mixture exhibits a realistic dynamics when approaching the 
thermal equilibriumJ 14'~s) 

With this simplification the Boltzmann equation reads 

O--h + a(r) ~--~ h + h = I fs(v'l) h(v', r) dr1 
O, 

(2.5) 

where we have introduced the scaled time and acceleration 

= n~aot (2.6a) 

a(z) = q E(t) (2.6b) 
nBcromA VTA 

and the velocities are scaled with vra. Note that nBao is the (velocity- 
independent) collision frequency. 

The search for a solution of Eq. (2.5) is considerably simplified by a 
theorem shown by Wannier (6~ for the three-dimensional case: Let hc(v, ~) 
be the solution of the "cold gas equation" 

hc+a(~)-~vhc+hc= 3(v'l)hc(v', z)dvl (2.7) 

Then the solution of Eq. (2.5) is given by the convolution of the cold gas 
solution and the Maxwell-Boltzmann equilibrium distribution of species A 

h(v, ~)=I he(u, O fA(v-u) du (2.8) 

provided (2.8) holds for the initial condition, too. Equation (2.8) is called 
the cold gas equation, because it is obtained as the limit of the Boltzmann 
equation (2.5) for T--* 0. It should be noted that this theorem holds for a 
constant collision frequency only (Maxwellian particles). 
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In order to prove this theorem, we first evaluate the integral on the 
right-hand side of Eq. (2.7) with the aid of the conservation equations 
(2.2a) (2.2b). In the case of equal masses (mA = m s )  we have v '=  Vl and 
v'~ = v and therefore the cold gas equation reduces to 

3--'hc+a(z) ~---v (2.9) 

Clearly, the solution of the Boltzmann equation for equal masses 

& +a(Z)~v +h=f(v) (2.10) 

(whe re f  := fA-fs) is given by the convolution (2.8). 
For m A r ms the cold gas equation reads 

1 ~--~ hc + a(r) ~---~ hc + hc=-~T hc(A-lv, z) (2.11) 

where 

A :-- mA -- mB 
(2.12) 

mA + ms 

Writing u instead of v in Eq. (2.11), multiplying it with fA(v-u), and 
integrating over u yields the same left-hand side as in Eq. (2.5). For the 
right-hand side we have to show that 

i 
f hc(A-lu, 75)fA(13--U)du: f fs(vll) f  hc(u , T)fA(1)'--U)did dv 1 IAI (2.13) 

and this can be easily verified by virtue of 

fs(V'I)fA(v'--u)=fA(v--Au)fB(vl--(I+A)u) (2.14) 

and therefore the convolution theorem for the one-dimensional Maxwell 
gas is proven. 

This convolution theorem allows us to represent the distribution 
function h in terms of the moments of the cold gas solution hc, 

<Vn>c("c) :=  fl)nhc(1), "c)dv (2.15) 

In order to derive this representation, we take the Fourier transform of 
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Eq. (2.8) and note that hc can be expressed as a Taylor series with <v">c(~) 
as coefficients 

7A(w) (--iw)" 
,=o n----~. (V")c(~) (2.16) 

Transforming back Eq. (2.16) yields for the distribution function 

h(v, r)= fA(v) ~ H,(v)(v"}~(~) (2.17) 
n = O  

where H.  are the Hermite polynomials. Putting r = 0  in (2.17) and using 
the orthogonality of the Hermite polynomials yields 

{v" )~(0)= ~ f ho(v) H,(v) dv (2.18) 

Equations (2.17) and (2.18) show that the distribution function is known 
as soon as the cold gas moments are available. 

In the case of the Lorentz gas, i.e., for mA ~ O, the cold gas equation 
(2.11) and the Boltzmann equation are identical (A = -1) ,  

Or +a(r) h = h ( - v , r ) - h ( v , r )  (2.19) 

This can also be seen from Eq. (2.8), since for rn A -*0 the equilibrium 
distribution fA tends to a 6-function and therefore we get h(v, ~)= he(v, r). 

In the next section we are going to solve the Boltzmann equation for 
equal masses, and it will turn out that the time-dependent distribution 
function can be expressed in terms of elementary functions, namely as a 
difference of two error functions. 

3. S O L U T I O N  OF T H E  B O L T Z M A N N  E Q U A T I O N  FOR E Q U A L  
M A S S E S  

In order to solve the cold gas equation for the case that the ions and 
the bath particles have equal masses (m A = roB), we take the Fourier trans- 
form of Eq. (2.9) 

0 -  
O---~ hc + iwa(z) hc + ~c = 1 (3.1) 

where ~c(w, r)=fhc(v, r)exp(-ivw)dv. Solving this first-order ordinary 
differential equanon and transforming back, we get as solution of the cold 
gas equation 

he(v, ~)= e-(~-~')6(v-va(r'[~))&'+e-(T-~~ (3.2) 
0 
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where va(r0lr) is the velocity gained by acceleration due to the external 
field during the time interval [%, r], 

v,(r01 r) = J~0 a(r') dr' (3.3) 

and he, o denotes the cold gas initial condition. From this result we get the 
solution of the linear Boltzmann equation for particles with equal masses in 
a time-dependent external field by applying the convolution theorem 
derived in the previous section. The result is 

h(v, r)=----1717 f ~ e (" ") e-- [v va(r'lT)]2dr' -{- e (~ ~~ 
.N/~ 'C  a 17 0 

For the special case of a constant external field a(r) =- a the integration in 
Eq. (3.4) can be carried out, yielding 

h(v'r)=lrcl/2---~ e-V2e(l/2a ~)2 Ierf (a t  +~al - v ) - e r f ( ~ a -  v)]  

+ e-~ho(v - at)  (3.5) 

where we have set Co = 0, and 

erf(x) := e-y2 dy (3.6) 

The equilibrium distribution is obtained by letting ~ ~ oo in Eq. (3.5): 

1 , / 7  1 
heq(v)=-77~ae-~2e ('/2a v)2 I--~- sgn(a) - erf (~a - v) ]  (3.7) 

This shows that the charged particle distribution does not approach a 
Maxwell-Boltzmann equilibrium distribution (see Fig. 1). 

One of the quantities of primary interest in the study of the relaxation 
of charged particles is their drift velocity, i.e., the mean velocity in 
equilibrium. For our special model we get 

{v) := f vheq(v) d v = a  (3.8a) 

or, in unscaled variables [see (2.6a), (2.6b)], 

( v ) = (q/nmao) E (3.8b) 
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Fig. 1. (a)  T ime-dependen t  veloci ty  d i s t r ibu t ion  funct ion for a field s t rength  a = 1, mA = m s ,  

and  a shifted G a u s s i a n  in i t ia l  d i s t r ibu t ion  ( ( v  > = - 2 ,  a = 0.5); (b) same as (a), seen from the 

long- t ime side. The a p p r o a c h  to a n o n - G a u s s i a n  equ i l ib r ium d i s t r ibu t ion  can  be clear ly  seen. 
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showing that the mobility K is independent of the external field 

K = q/nmao (3.9) 

The independence of the mobility from the external field is a special feature 
of the Maxwellian interaction law. For the "more realistic" hard rod gas 
the drift velocity, and consequently the mobility, shows a complicated 
dependence on the external field (see ref. 3). In the weak and strong field 
limits this dependence is given by 

q for E - 4 0  
nmvr7 

K= 
2q 1~ 1/2 for E-4oe  

rcnm E/ 
where 

j ~ dx = 1.5234789... 
7~ 

7 : = ~  o [e -x2+2xerf(x)] 2 

showing that the mobility of charged hard rods tends to zero for E-4 oe. 
The shape of the distribution function can be best examined with the 

aid of the central moments of h(v, z). To calculate these moments, it is 
advantageous to start from the integral representation (3.4). Although it 
does not pose any problem to compute the moments as a function of time, 
we restrict ourselves to the central moments of the equilibrium distribution, 

(( ,_( ,>).>=foe_ 1 - - ~ f  (v -a)"e  (v-a~')2dvdz' (3.10) 

This integral can be easily evaluated and yields expressions for the 
moments in terms of a double sum. However, we refrain from writing them 
down, since in the next section we will derive more general expressions, 
val~id also for different masses. 

4. SOLUTION OF THE BOLTZMANN EQUATION FOR 
DIFFERENT MASSES 

In order to solve the Boltzmann equation for different masses we only" 
have to find expressions for the cold gas moments (v n)c(z) (see Section 2). 
Assuming that vnhc-40 as [v] -4 oe and integrating by parts, we get the 
following set of differential equations for the cold gas moments: 

d 
--~z(V"}c+#,(v"}c=na(z)(v" 1 }c(z), n /> l  (4.1) 
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with 
#, := 1 - A n ( 4 . 2 )  

and the starting condition (v~ = 1. The solution of Eq. (4.1)is given 
by 

f; ( v ' ) c ( r ) = n  e ~"(~ ~'~a(r')(v ~ l ) c ( z ' ) & ' + e  ~~ ~~ (4.3) 
0 

where (vn)~.(0) is connected with the initial distribution h o via Eq. (2.18). 
For the special case of a constant external field a(r)-= a these moments 

can be calculated explicitly. Taking into account that the integral in 
Eq. (4.3) is a convolution integral, the moments are most easily evaluated 
by taking the Laplace transform of Eq. (4.3). The final result is (% = 0) 

= S" ~ (vk)c(O)a "-k ~ An,k,je -uF (4.4) 
(v")~(z) ~o k  ! = j = k  

with 
n 1 

A ~ , k , j = l ~ _ k A j  - ~1  

i ~ ./ 

(4.5) 

By using Eq. (2.17), we finally get for the time-dependent distribution 
function 

h(v, z )=fA(v)  Hn(v) ~. (vk)c(0) a "-k  A,,kje ~,1~ (4.6) 
n~O k : O  j = k  

For z ~ oe we get the equilibrium distribution (#o = 0) 

a n 

heq(v) = fA(V) L H,(v) (4.7) (~J; A)n n = 0  

where we have introduced the commonly used abbreviation 

n - - 1  

(z; q), := 1-I (1 - z q  t) and (z; q)o := 1 (4.8) 
/ = 0  

Since the representation (417) also holds for equal masses (A = 0), we get 
by comparison with Eq. (3.7) the following interesting expansion: 

-erf( a 
a n = O  
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For the actual computation of the equilibrium distribution for different 
masses the infinite sum (4.7) poses considerable difficulties, especially for 
lat > 1. Therefore, we derive an alternative representation, which is well 
suited for numerical computations, but is also interesting by itself. A 
theorem by Euler ~16} states that for IzJ < 1 and Iql < 1 

zkqk(k 1 )/2 
k=o (q;q)~ = ( - z ; q ) ~  (4.10) 

Putting q = d and z =  - A  "+ 1, Eq. (4.10) becomes 

1 i (--1)kzjknA k(k+l}/2 = 1 (4.11) 

(a ;3)~ (3;3)k (3;3).  k=O 

Replacing 1/(A;A), in Eq. (4.7) by the left-hand side of Eq. (4.11) and 
interchanging the summations, one finds 

1 ~ (--1)kzl  k(k+l)/2 
heq(v) - ( J ;  A ) ~  k=O (3; 3)~ h~q(v; aA~) (4.12) 

where h]q(v;a) denotes the equilibrium distribution function for equal 
masses with constant external field a given by Eq. (3.7). Equation (4.12) is 
well suited for an efficient numerical evaluation of the equilibrium dis- 
tribution function for different masses. 

From Eq. (4.7) the drift velocity can be easily calculated and is given 
by 

a a m A -ff m B 
( v )  . . . . .  a (4.13) 

Pl 1 - A  2mB 

showing, as in the case of equal masses, that the mobility is independent of 
the external field. 

In order to investigate the shape of the equilibrium distribution 
function, we calculate its central moments. This can be most easily done by 
expressing the powers of the velocity in terms of Hermite polynomials (see 
Appendix) and then using their orthogonality. For the even moments we 
find 

\ k ,  ' )  k ,/'/1 ,/ / 2 2roD/! 1 - ] - m - - ~ 2 ) q 7  ~ k=2 (m--k-)! 

2k (__ 1)t 
x ~ I! #~(~-~2k  (4.14) 

l~0 --I 



1042 Eder and Posch 

Putting m =  1, we obtain the variance of the equilibrium distribution 
function 

1 a 2 
a 2 "-- ( v 2 5 -  (v>2=~+~-~ (4.15) 

For the odd moments we get (m >t 2) 

( ( a )  2m 11 (2m- - l ) !  ,~ (2a)2X-12~ 1 ( - -1) '  
9 - - - -  = 2 2m-1 (-~'-~--k)f l] bt{(~7Ll'-~'2k /~,/ k== l=o - t -1  

(4.16) 

However, this skewness, as well as all higher odd moments, vanishes with 
order a 3 or higher as a-+ 0. Moreover, it turns out that in the low-field 
limit the equilibrium distribution function can be approximated by a 
Gaussian distribution with mean a/l~l [cf. Eq. (4.13)] and variance 
1+ a2/#2 [-cf. Eq. (4.15)], 

1 e x p [  (--v-u-a/"l)2--] (4.18) 
h~(v) = [rt(1 + 2a2/1~2)] 1/2 1 + 2a2/#2 J 

While the odd moments of h G vanish identically (which means that they 
are identical to the odd moments of h eq up to order a2), the even moments 
of h G are given by 

a ) 2 m ~  (2m) ! 

(2m)r 
= 22mm-----~. ( 

l +m2ae']+O(a4),  
1~2 / 

a ---, 0 (4.19) 

which shows that in the low-field limit (a ~ 0) the even moments coincide 
up to order a 3 with the moments of the exact equilibrium distribution 
[compare Eq. (4.14)]. For the quality of the Gaussian approximation in 
the low-field limit see Fig. 2. 

For large values of the external field we get from Eqs. (4.14) and (4.16) 

v -  a n =ann! ~ l!p~(5;-A-)~ +O(an-2)'  a--*oo (4.20) 
/~1 t=o - t  

For equal masses (A =0,/~1 = 1) these are exactly the central moments of 
the exponential distribution 

ha(v) = 69(v) 1 e_V/a (4.21) a 

Putting m = 2, we find that the equilibrium distribution is skewed: 

((v - a/#l) 3 > = 2a3/#3 (4,17) 
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m 

-6  -4  -2  

m~/m B = 1 
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Fig. 2. Velocity equilibrium distributions for a field strength a = 1 and different mass ratios 
mA/mB = 0.1, 0.2, 1, 5, 10. Note that for reciprocal mass ratios the distribution function look 
similar in shape, but is shifted in v. 

where 6) denotes the unit step function. In Fig. 3 we display the exact 
distribution function [cf. Eq. (3.7)] and the approximation (4.21) as a 
function of via for different values of a. It shows that for large v the 
presence of an external field changes the large-velocity tail qualitatively 
from e x p ( - v  2) (no field) to exp( -v /a )  (large field). 

For the case of different masses the approximate distribution can be 
found by replacing hl(v;ad k) by (ad k) l exp(v/aA k) in Eq.(4.12). 
However, the resulting expression does not reduce to an elementary 
function and therefore it will not be pursued further. 

5. THE LORENTZ L IMIT  (mA-*O) A N D  THE RAYLEIGH L IM IT  
(m,,  - ,  ~ )  

In the Lorentz limit, where the ions are scattered on immobile par- 
ticles of infinite mass, the cold gas equation and the Boltzmann equation 
are identical and given by Eq. (2.19). In order to solve this equation, we 
introduce the even and odd parts of the distribution function hev(V, 3) and 
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a h eq 
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a = l  
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Via 
Fig. 3. High-velocity tail exp(-v/a) (dashed line) of the velocity equilibrium distribution for 
different field strengths a = 1, 2, 3, 4 plotted as function of via. For a = 1 the asymptotic 
exponential behavior is reached much later than for higher values of a. 

hod(V, T), respectively. Put t ing  v ~ - v  in Eq. (2.19) yields the following pair  
of coupled part ial  differential equat ions  for h~v and hod  

! hev + a('c ) -~v h~ = 

O 
c3-~ h~ + a(~) ~vv hey = --2hod(V, ~) 

(5.1a) 

(5.1b) 

Tak ing  the Four ier  t ransform in velocity space reduces the system (5.1a), 
(5.16) to a system of ord inary  differential equat ions  

with 

d 
h = - A ( v )  h (5.2a) 
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The solution of Eq. (5.2a) is given by 

h(w, v) = e -  vIT01,)ho(w ) 

where 

f (o  V('c~ o A ( z ' ) & ' =  iWVa(,COl~ ) 

1045 

(5.3a) 

iwv~(TolV)~ (5.3b) 
2(z - To) ] 

and the velocity v,(Tolr) due to the acceleration a(r) in [To, ~] is given by 
Eq. (3.3). Furthermore, ho(w)= (~ev,o(W), ho<o(w)) T, where ~ev,o and hod,O 
denote the Fourier transforms of the even and odd parts of the initial 
velocity distribution ho, respectively. The matrix exponential in Eq. (5.3a) 
can be made explicit by diagonalizing the matrix V(ro[r); we get 

V(~oj r) = T )~2 

iwva(21- 22) \ 2~ 22 J \  0 ),2 2, - iwva /  

where the eigenvalues 21 and 22 of V(rolr) are given by 

21,2 = r - To _+ [(v - %)2 _ w2v](ro i v)]1/2 (5.4b) 

From Eq. (5.4a) we then get 

-v(T010= 1 ( )qe-~.2 22e ;-1 iwva(e-~,_e-;.2).~ 
e 21_ ) `2 \ iwva(e -<_e  ;.2) 21e ;'~-),2e -x~} (5.5) 

The inverse Fourier transformation can be carried out by virtue of 

~- - 1 (exp [ l( 1 - a 2w 2 )1/2~_ Z- a - ~ w  ~ l / ~ ]  _ exp [ - t( 1 -- ~2w2 )1/2 ] J 

1 =-~Io(~(~2t2--v2) l /2)O([~l  t--  IV[) (5.6) 

where Io is the modified Bessel function of order zero, and yields for the 
even and odd parts of the distribution function, respectively, 

h~(v, ~) = he~,o(V) * t- 1 g(fl; v, T)] T %Off ~=1 

-- a('~ol ~c) hod,O(V) * 0 ~vv g(1; v, z) (5.7a) 

822/52/3-4-34 
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and 

hod(V, t )=hod,O(V)* 1 g(fl;V, 'C)[O= 1 
t - t o  O~ 

0 
- or(to I t )  hev,o(V). "~v g(1; v, z) (5.7b) 

where the asterisk denotes convolution in velocity space, and g(fl; v, z)  is 
given by 

1 e-(~-~~ 1 ) g(fl; v, r) = 2 I~(Zo [z)[ ~ [flZv](zo l v) - v 2] 1/2 

x O(/~ Iva(~ol t ) l -  Ivl) (5.8) 

In Eq. (5.8) we have introduced the average acceleration 6(%1t) in the 
interval [%, t] ,  

1 
a ( t 0 1 t )  = / ' ) a ( t O l t )  = ' a(t')&' (5 .9 )  

T - -  t O 17 - -  t 0 0 

From Eqs. (5.7a), (5.7b) we finally get for the distribution function 

( 1 ~ . t  -% ~fl O) h(v, z)= ho(v) * a(tol t) ~--- v g(fl; v, t)[t~= , + h o ( - V  ) * g(1; v, t) 
(5.10) 

In order to study the long-time behavior of the distribution function, 
we calculate the moments (v")(t).  To this end, we need the moments of 
g(/~; v, t), 

gk(fl; t )  := J vkg(fl; v, z)  dv (5.11) 

It is easily shown that the odd moments vanish identically, and for the even 
moments we find, substituting v = fl [val cos 0, 

g2k(fl; t ) = ( t _  Zo ) vaEk(% I t )  fl2k + le-(r162176 

to '2 x Io(fl(z - %) sin 0) cos 2k 0 sin 0 dO (5.12) 

This integral can be found in integral tables (17) and leads to the following 
expression for the even moments of g(fl; v, r): 

a2 k (2k)V 
g2k(fl; t )  = - ( ' r O l t ) ~ [ 2 f l ( Z - - Z O ) ]  k + l e -(~-~~ 

L2fi(T- ro)_l Ik+,/2(fl(t- %)) (5.13) 



1D Linear Boltzmann Equation 1047 

The modified Bessel functions of half-integer order, in turn, can be 
expressed in terms of elementary functions, (~8) which leads to the following 
representation of g;k : 

g2k(fl; z) = ti2k(Zo [ z) e -  ~ -  ~~ - %)) (5.14a) 

where 

and 

~,~(z) :=  r~(z) e z -  r k ( - z )  e - ~  (5.14b) 

( - 1)k(2k)! ~ /2k - l) ( -2 z )  t 
(5.14c) 

Now it is a simple matter to calculate the moments of the distribution 
function (5.10). For the even moments we get 

(v2m)(z)=e_(~_~o) ~ (2m)(v2,~_2k)(Zo ) 
k=o 2k 

• a2k('Co ] "c) ( d  --}- 1) ~k(Z -- ~'o) 

m~l (2m -- 1) (v2,.-  2k- 1 )(%) + 2me - ~-  ~o) 
k=o 2k 

x ~i2/' § l(zo I Z) Tk(z -- %) (5.15) 

and the odd moments are given by 

(v2m+l)(z)=e-(~-':~ k=o ~ \(2m+2k 1)(/)2rn--2k+l)(~.0) 

• ~i2k(%, r) ( d -  1) ?,k(~- %) 

+(2m+l)e-"~-~o) ~ (2m)  k=o 2k (vZm-2k)(TO) 

• a 2~+ 1(to Iv) ~ ( r -  ~o) (5.16) 

In the case of a constant external field, a(z) = a (a > 0), the Lorentz 
gas has been studied by Piasecki,(2) who investigated the runaway effects of 
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electrons for different interaction laws. For a constant external field the 
distribution function can be written as 

h(v,r)=ho(v)* O-~r- ~v +1 g(v ,c)+ho(-v)*g(v ,~)  (5.17) 

where g(v, ~) =- g(1; v, ~) now reads (% = 0) 

1 g(v, "c) = ~a e-  ~lo ( !  (a2~2 - v2)l/2 ) O(ac - ,v, ) (5.18) 

Closer inspection of Eq. (5.12) shows that g(v, ~) is the Green's function of 
the one-dimensional telegraph equation (19) 

(~2 1 c3 1 02 
Ov---s g=-~-~ g +-~-~z g (5.19) 

with "diffusion coefficient" D = a2/2 and "propagation speed" c = a. 
In order to study the long-time limit for the constant field, we have a 

look at the moments. Putting m = 0  in Eq. (5.16), we get for the time- 
dependent mean velocity (% = 0) 

(V)(Z,) = ( v ) ( 0 )  e -22  + �89 - e -2~)  ( 5 . 2 0 a )  

which yields for the drift velocity 

( v ) =  lim (v) (z )=a/2  (5.20b) 

The higher moments, however, do not approach finite limits for z--* oo. 
From Eq. (5.15) we get for the long-time behavior of the even central 
moments 

(( v -  a ( T ) = ~ ( 2 a 2 z ) ' + O ( r  r ~ o e  (5.21) 

The leading term in Eq. (5.21) is the exact expression for the even central 
moments of the shifted Gaussian distribution, 

1 
hG(v, T) = (27ta52) m exp I (v -- a/2) 2] 2a-~-~ J (5.22) 

describing a simple diffusion process. That this Gaussian distribution is a 
reasonable approximation to the exact distribution of the Lorentz gas in 
the long-time limit is further justified by the fact that the odd central 
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moments calculated via Eq. (5.16) grow much slower than the even ones 
(m~> 1), 

{( , v-sa ) (~)= 0(<-~) ,  ~-- ,~ (5.23) 

The emergence of a diffusive long-time behavior of the charged particles in 
the presence of a constant external field is quite surprising, since in the 
zero-field case the distribution function of the Lorentz gas is given by 

h(v, r) = �89 + e -T) ho(v ) + �89 - e ~) h o ( - v )  (5.24) 

with the well-defined equilibrium distribution 

h~q(v)= lim h(v, ~c )= �89  =h~v.0(v) (5.25) 

In Fig. 4 we display the decay of a displaced Gaussian initial distribution, 
seen from both the short- and long-time sides. In Fig. 4b the diffusive 
Gaussian distribution [cf. Eq. (5.22)] can be clearly recognized. 

Finally we want to study the Rayleigh limit, i.e., the limit m A --* oo (in 
one dimension also referred to as the Rayleigh piston problem). By letting 
m A ~ oo in the Boltzmann equation (2.5), the collision integral vanishes 
and only free streaming remains. However, a nontrivial distribution 
function can be derived from the Boltzmann equation in the Rayleigh limit 
by rescaling the variables. We put [cf. Eqs. (2.6a), (2.6b)] 

r =  ]21nBffol (5.26a) 

a(r)  = q E( t )  (5.26b) 
]211"IBffOmAVTA 

v* = v/vr~, v* = V/VT~ (5.26C) 

where #1 = l - A  = 2mB/(m A + mB). This scaling corresponds to the usual 
scaling to the diffusion coefficient DAB=V~A/2#I.  Inserting Eqs. (5.26a)-- 
(5.26c) into the Boltzmann equation and making use of detailed balance, 
one can carry out the limit m A ~ 00, yielding the following Fokker-Planck 
equation (the asterisks have been dropped for convenience): 

-~-~h -~-~h ~ I 9 2 (5.27) 

For the details of this derivation see, e.g., ref. 13. It should by mentioned 
that Eq. (5.27) is obtained for every quasi-r -v potential. Equation (5.27) 
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Fig. 4. (a) Approach to equilibrium of a Lorentz gas (mA ~ 0) for a field strength a = 1 seen 
from the short-time side. (b) Same as (a), seen from the long-time side. The transition from a 
distribution determined by collisions to a distribution determined by diffusive behavior can be 
seen. 
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has been already derived by Chandrasekhar in his study of Brownian 
motion in an external fieldJ 2~ He also outlined a general solution method 
for Eq. (5.27). Since the details can be found there, we only write down the 
result. The time-dependent velocity distribution for a Rayleigh particle in 
an arbitrary external field with the initial condition h(v, %)= 6 ( v -  Vo) is 
given by 

1 h(v, r)= 
(~{ 1 - e x p [ - 2 ( v  - 30)] })1/2 

xexp[  { v - v e ( 3 ~ 1 7 6 1 7 6  

where 

Ve('~O I "g) = e-(~-~')a(z')d3 ' (5.29) 
0 

In the special case of a constant external field a ( r )=  a we immediately 
obtain for the equilibrium distribution (3 -~ oo) 

heq(v ) = ~ e - (v -  a~2 = f A(v - a) (5.30) 

showing that in the case of a Rayleigh particle the shifted Gaussian 
distribution is exact (see Section 4). 

6. THE CASE OF A PERIODIC EXTERNAL FIELD 

So far we have been mainly concerned with a constant external field. 
In this section we extend our analysis to the case of a periodic external 
field, 

a(3) = a cos cot (6.1) 

where co is the (scaled) frequency of the field. 
In the case of equal masses the general expression for the distribution 

function has been derived in Section 3. For the velocity gained by the 
acceleration due to the field (6.1) we get [see Eq. (3.3)] 

va(%[ ~ ) = a  (sin co3 - s i n  co%) (6.2) 
CO 

Inserting Ua(ZOlr ) into Eq. (3.4) yields the time-dependent velocity dis- 
tribution function. This function depends also on the initial time ro and not 
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only on the difference t -  to (nonautonomous system). We are primarily 
interested in the shape of the distribution function after a long time (t ~> t0) 
when the particular form of the initial distribution is no longer seen. This 
stationary distribution h s can be obtained by performing the limit 
t 0 ~ --OC)~ 

h~(v, t ) =  lim h(v, t )  
t 0 ~ - - c o  

{ }) --x/n~l fo exp - r '  - v-a--co [sin c o t -  sin co(t - t ' ) ]  dr' (6.3) 

This equation contains the two cases of no field and a constant field as 
limits: for c o ~ o e  we get h ~ = f ,  and for co--,0 we get hS=h eq [cf. 
Eq. (3.7)]. 

In the case of different masses we consider again the cold gas 
moments. For the stationary cold gas moments ( t o ~  - o e )  we get from 
Eq. (4.3) 

f 
~ 

( V ' ) c ( t ) = n  e-~,(~-~')acoscot '  ( v , - ~ ) c ( t , ) d t  ' (6.4) 

We try to solve this recursive equation by the ansatz 

( v ' ) c ( t ) = n ! a "  i B , k  ei(" 2k)o~ (6.5) 
k = O  

Insertion into Eq. (6.4) yields the following recursion relations for the 
frequency- and mass-dependent coefficients B,,k 

1 B._ 1,o 1 B n _ 1 n -  1 (6.6a) 
Bo,o = 1, B,,,o = 2 It. + inco' B,,,. = 2 #,, - inco 

and 

l B .  l,k+B,, 1,~ 1 k = l  ..... n - 1  (6.6b) 
Bn,k=~ # , + i ( n - - 2 k )  co ' 

From Eq. (6.6a) we get immediately 

1 i~ I 1 1 01 1 =B.o (6.7) B,,o = ~ B , ,  = ~-~ #t - ilco z= 1 ktt+ ilco' ' = 

where the bar denotes complex conjugation. We have not succeeded in 
deriving a simple explicit expression for B,,~ (k • 0, n) for arbitrary mass 
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ratios; one can only deduce that B.,. ~ =/~.,k- In the case of equal masses, 
however, the recursion relation (6.6b) can be made explicit, yielding (/~. = 1 
for n~> 1) 

1 / 'n )  . - k  1 (6.8) 
B,,k = l (nk ) Bk,kB, - k,o = -~-~ \ k J fl-I_k l + iZco 

The stationary distribution function for arbitrary masses is obtained from 
Eq. (6.5) by using Eq. (2.17), 

hS(v,r)=fA(v) ~ a"H.(v) ~ B.,ke '(" 2k)oor 
n=0 k=O 

(6.9) 

with B,, k given by Eqs. (6.6b) and (6.7). Equation (6.9) shows that the 
stationary distribution function is periodic with period 27r/co. Furthermore, 
because of H,,(-v)= ( - 1 ) "  H,(v), the stationary distribution has the 
following additional symmetry: 

hS(v, r + rr/co) = h S ( - v ,  ~) (6.10) 

In Figs. 5 and 6 we display the stationary distribution function for 
equal masses for different values of a and co. 

The distribution function of the Lorentz gas (mA ~ 0) in the case of a 
periodic external field (6.1) is given by Eqs. (5.9) and (5.10) after inserting 
Eq. (6.2). In the long-time limit r - , o e  (or, alternatively, ro ~ - o e )  we 
have 

lim 6( roJ r )=  lim 6 ( r o l r ) = 0  (6.11) 
~0 ~ oo ~ o o  

and therefore we find for the moments from Eqs. (5.15) and (5.16), respec- 
tively, 

(/)2m)(T) ~ (/)2rn) (tO) "}- 0 ( & )  , r ~ o e  (6.12a) 

and 

v ~ ~ (6.12b) 

This shows that the distribution function approaches an equilibrium with 
vanishing odd moments, and the even moments are identical to the initial 
ones. This means that the equilibrium distribution is independent of the 
external field and is given by Eq. (5.25). However, the decay of the 
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Fig. 5. (a)  S ta t ionary  veloci ty  d i s t r ibu t ion  funct ion for a per iodic  ex te rna l  field 
a(z) = a cos ogr for a = 24, ~o = 8, and  mA = roB. The  h igh  field spli ts  the d i s t r ibu t ion  in to  a 
doub le -peaked  structure.  (b) Same as (a), for a = 3 and  ~o = 1. The  ra t io  a/o~ is same as in (a), 
bu t  the field s t reng th  is lowered.  The split  in the d i s t r ibu t ion  is ha rd ly  visible. 
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O.d 

T = 2 r / w  
~J 

0.3 

0.2 

0. i 

0 
15 

- i s  

Fig. 6. Stationary velocity distribution function for a periodic external field a ( r ) =  a cos cor 
for a = 24, co = 4, and mA = me .  The field strength is the same as in Fig. 4a, but  the frequency 
is halved. A triple-peak structure becomes visible, and the lower frequency allows wider 
velocity excursions. 

fluctuations of the distribution function due to the periodic external field is 
of order ( z -  To) - I  and is therefore very slow. 

Figures 7a and 7b display the approach to equilibrium for a Lorentz 
gas for a high and low frequency of the external field. 

In the Rayleigh limit (mA ~ oo) we get the distribution function for the 
periodic external field by inserting the "damped" velocity Ve(T0[T), 
calculated by insertion of Eq. (6.1) into Eq. (5.29), into Eq. (5.28). The 
stationary distribution is obtained for ~o ~ - m .  In this limit Ve reads 

a 
lira re(To IT) = ~ (cos cot + co sin coT) (6.13) 

and therefore the stationary distribution function is given by 

{I 1 1 a (cos coz + co sin ogr) hS(v,T)=--~exp -- v co2 x/~ 1+ (6.14) 

showing that the stationary distribution function is periodic with period 
2n/co, but remains Gaussian with variance 1/2, independent of a and co, 
and a periodic mean given by Eq. (6.13). An example is displayed in Fig. 8. 



0 . 8  

0 . 6  

0 . 4  

0 . 2  

0 
-8 

30 8 

0 . 8  

0 . 8  

0 . 4  

0 . 2  

0 
0 -8 

3O 8 

Fig. 7. (a) Approach to equilibrium for a Lorentz gas (m A --, 0) under the influence of a 
periodic external field a ( ~ ) = a c o s m z  for a =  1 and co=2. The equilibrium distribution 
becomes field independent and is determined by the even part  of the initial distribution. (b) 
Same as (a), with lower frequency o)=  0.2. Three regimes can be distinguished: (1) collisional 
changes determine the shape of the distribution function, (2) diffusive motion dominates (as in 
a constant field; compare Fig. 4), (3) slowly decaying oscillating approach to a field-indepen- 
dent equilibrium distribution. 
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Fig, 8. Stat ionary velocity distr ibution function for a Rayleigh gas (mA---' oo) under the 
influence of a periodic external field a(z)=a cos oJr for a = 24 and o~ = 8. The distribution 
remains a Gauss ian  with constant  variance and periodic mean. 

7. C O N C L U S I O N  

The aim of this paper was to calculate the influence of a constant and 
a time-dependent external field on a mixture of Maxwellian particles with 
different masses in one dimension. The results are summarized in Table I. 
For  the constant field case the well-knon difference between a hard rod and 
a Maxwellian system should be stressed. In the latter case there is no 
qualitative difference in the mean and the variance if one compares high- 
and low-field limits. The most striking result for the constant field case is 
shown in Fig. 3, where the strong deviation from the Gaussian shape can 
be seen. 

The limiting case of the Lorentz gas (m~ ~ 0) behaves in a surprising 
way for both the constant and the periodic field. In the former case the 
velocity distribution becomes diffusive and spreads out indefinitely; in the 
latter case it becomes independent of the external field. The opposite limit, 
the Rayleigh gas (mA ~ oo), behaves as expected in the simplest fashion. 
The stationary distribution is a periodically shifted Gaussian with constant 
variance. For  the general case of finite mass ratios there is a rich spectrum 
of distribution functions and the details depend strongly on the ratio of the 
field strength and the frequency of the field. 
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A P P E N D I X  

In this Appendix we derive a representation of the powers x" in terms 
of the Hermite polynomials H~(x). This representation is useful for 
calculating the moments  of a function given as a series of Hermite 
polynomials. Since Hn(x ) is even (odd) when n is even (odd), we can treat 
the cases n = 2m and n = 2m + 1 separately. 

For  n = 2m we find (21) 

H2m(X)= ~ am,kX 2k (Ala)  
k = O  

with 

( - 1 )  m+k (2m)! 2 ~k 
am'k= (m-k)!  (2k)! ' k ~m (Alb)  

We are looking for coefficients b,,,k so that 

x 2'~= ~ b~,kH2k(x) (A2) 
k = O  

where b,,,k = 0 for k > m. In the language of linear algebra, we are looking 
for the inverse matrix B = (b,,,k) of the lower triangular matrix A = (am,h). 
Therefore we have to solve 

• am,tbt, k = 6 , . ,k  (A3) 
l=k 

From Eq. (A3) the coefficients bm,k can be calculated successively. For  
k=m one finds immediately bm,m=l/am,m=2 -2m. Putting k = m - 1 ,  
m -  2, m -  3,..., successively one is lead to the conjecture that 

(2m)! 
b,,,k = 22m(m _ k)! (2k~ '  k ~< m (A4) 

In order to prove Eq. (A4), it remains to be shown that 

( - 1 )  t 
~, (m--l~ (l_k)!=O for k <m (A5) 
I=k 

and this can be shown by binomially expanding the function 
f(x) = (1 - x ) " ,  differentiating both sides k ( < m )  times, and putting x = 1. 
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By the same arguments  one can show that  the inversion of 

H2m+~(x)  ( - 1 ) m  ( 2 m +  1)! 
( - -1 )k22k+ l  

x2k  + 1 

k=0 ( m - k ) !  ( 2 k +  1)! 

is given by 

Eder and Posch 

(A6) 

( 2 m +  1)! ~ 1 
x 2 m + l =  " ~ " ~ ] "  " "  ( m - k ) !  ( 2 k +  1)! H2k+~(x) (A7) 

k = O  
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